Higher-order hybrid implicit/explicit FDTD time-stepping
نویسندگان
چکیده
منابع مشابه
Efficient multiple time-stepping algorithms of higher order
Multiple time-stepping (MTS) algorithms allow to efficiently integrate large systems of ordinary differential equations, where a few stiff terms restrict the timestep of an otherwise non-stiff system. In this work, we discuss a flexible class of MTS techniques, based on multistep methods. Our approach contains several popular methods as special cases and it allows for the easy construction of n...
متن کاملFourth-Order Time-Stepping for Stiff PDEs
A modification of the exponential time-differencing fourth-order Runge–Kutta method for solving stiff nonlinear PDEs is presented that solves the problem of numerical instability in the scheme as proposed by Cox and Matthews and generalizes the method to nondiagonal operators. A comparison is made of the performance of this modified exponential time-differencing (ETD) scheme against the competi...
متن کاملMultiple-time-stepping generalized hybrid Monte Carlo methods
Performance of the generalized shadow hybrid Monte Carlo (GSHMC) method [1], which proved to be superior in sampling efficiency over its predecessors [2–4], molecular dynamics and hybrid Monte Carlo, can be further improved by combining it with multi-time-stepping (MTS) and mollification of slow forces. We demonstrate that the comparatively simple modifications of the method not only lead to be...
متن کاملHigh-Order Time Stepping for the Incompressible Navier-Stokes Equations
This paper introduces a high-order time stepping technique for solving the incompressible Navier–Stokes equations which, unlike coupled techniques, does not require solving a saddle point problem at each time step and, unlike projection methods, does not produce splitting errors and spurious boundary layers. The technique is a generalization of the artificial compressibility method; it is uncon...
متن کاملA note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations
In this note, we extend our recent work for the heat equation in [1] and compare numerically continuous Galerkin-Petrov (cGP) and discontinuous Galerkin (dG) time discretizations for the nonstationary Stokes equations in two dimensions. For the space discretization, we use the LBB-stable finite element pair Q2/P disc 1 and we discuss implementation aspects as well as methods for solving the res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2016
ISSN: 0021-9991
DOI: 10.1016/j.jcp.2016.09.065